Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Viruses ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543738

RESUMO

Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses.


Assuntos
Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Humanos , Animais , Bovinos , 60548 , Thogotovirus/genética
2.
Virology ; 589: 109914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931589

RESUMO

Viruses in the thogotovirus genus of the family Orthomyxoviridae are much less well-understood than influenza viruses despite documented zoonotic transmission and association with human disease. This study therefore developed a cell-cell fusion assay and three pseudotyping tools and used them to assess envelope function and cell tropism. Envelope glycoproteins of Dhori (DHOV), Thogoto (THOV), Bourbon, and Sinu viruses were all revealed to exhibit pH-dependent triggering of membrane fusion. Lentivirus vectors were robustly pseudotyped with these glycoproteins while influenza virus vectors showed pseudotyping compatibility, albeit at lower efficiencies. Replication-competent vesicular stomatitis virus expressing DHOV or THOV glycoproteins were also successfully generated. These pseudotyped viruses mediated entry into a wide range of mammalian cell lines, including human primary cells. The promiscuousness of these viruses suggests the use of a relatively ubiquitous receptor and their entry into numerous mammalian cells emphasize their high potential as veterinary and zoonotic diseases.


Assuntos
Orthomyxoviridae , Thogotovirus , Animais , Humanos , Thogotovirus/genética , Glicoproteínas/genética , Orthomyxoviridae/genética , Lentivirus/genética , Linhagem Celular , Vetores Genéticos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Mamíferos
3.
Viruses ; 15(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140674

RESUMO

Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.


Assuntos
Doenças dos Bovinos , Cervos , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Humanos , Animais , Bovinos , Suínos , Cavalos , Animais Selvagens , Estudos Soroepidemiológicos , Camelus , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Ruminantes
4.
Viruses ; 15(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140686

RESUMO

Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Bovinos , Animais , Suínos , Humanos , Influenza Humana/genética , 60548 , Thogotovirus/genética , Orthomyxoviridae/genética , Proteínas Virais/genética , Genes Reporter , Antivirais/farmacologia
6.
Viruses ; 15(9)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37766314

RESUMO

Non-structural protein 4 (NS4) of insect-borne and tick-borne orbiviruses is encoded by genome segment 9, from a secondary open reading frame. Though a protein dispensable for bluetongue virus (BTV) replication, it has been shown to counter the interferon response in cells infected with BTV or African horse sickness virus. We further explored the functional role(s) of NS4 proteins of BTV and the tick-borne Great Island virus (GIV). We show that NS4 of BTV or GIV helps an E3L deletion mutant of vaccinia virus to replicate efficiently in interferon-treated cells, further confirming the role of NS4 as an interferon antagonist. Our results indicate that ectopically expressed NS4 of BTV localised with caspase 3 within the nucleus and was found in a protein complex with active caspase 3 in a pull-down assay. Previous studies have shown that pro-apoptotic caspases (including caspase 3) suppress type I interferon response by cleaving mediators involved in interferon signalling. Our data suggest that orbivirus NS4 plays a role in modulating the apoptotic process and/or regulating the interferon response in mammalian cells, thus acting as a virulence factor in pathogenesis.


Assuntos
Vírus Bluetongue , Interferon Tipo I , Orbivirus , Thogotovirus , Animais , Orbivirus/genética , Caspase 3 , Vírus Bluetongue/genética , Apoptose , Mamíferos
7.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643129

RESUMO

The recent discovery of Bourbon virus (BRBV) put a new focus on the genus of thogotoviruses as zoonotic, tick-transmitted pathogens within the orthomyxovirus family. Since 2014, BRBV has been linked to several human cases in the Midwest United States with severe acute febrile illness and a history of tick bites. The detection of the virus in the Lone Star tick, Amblyomma americanum, and a high sero-prevalence in wild animals suggest widespread circulation of BRBV. Phylogenetic analysis of the viral RNA genome classified BRBV into the subgroup of Dhori-like thogotoviruses. Strikingly, BRBV is apathogenic in mice, contrasting not only with the fatal disease in affected patients but also with the severe disease in mice caused by other members of the thogotovirus genus. To gain insights into this intriguing discrepancy, we will review the molecular biology and pathology of BRBV and its unique position within the thogotovirus genus. Lastly, we will discuss the zoonotic threat posed by this newly discovered pathogen.


Assuntos
Thogotovirus , Humanos , Animais , Camundongos , Thogotovirus/genética , Filogenia , Animais Selvagens , RNA Viral/genética
8.
Virology ; 587: 109859, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544044

RESUMO

Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Vírus , Bovinos , Animais , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Prevalência , Complexo Respiratório Bovino/epidemiologia , Doenças dos Bovinos/epidemiologia
9.
J Virol ; 97(6): e0035623, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199648

RESUMO

Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.


Assuntos
Modelos Animais de Doenças , Cobaias , Infecções por Orthomyxoviridae , Thogotovirus , Animais , Humanos , Administração Intranasal , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais
10.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112809

RESUMO

Influenza D virus (IDV) has been detected in bovine respiratory disease (BRD) outbreaks, and experimental studies demonstrated this virus's capacity to cause lesions in the respiratory tract. In addition, IDV-specific antibodies were detected in human sera, which indicated that this virus plays a potential zoonotic role. The present study aimed to extend our knowledge about the epidemiologic situation of IDV in Swedish dairy farms, using bulk tank milk (BTM) samples for the detection of IDV antibodies. A total of 461 and 338 BTM samples collected during 2019 and 2020, respectively, were analyzed with an in-house indirect ELISA. In total, 147 (32%) and 135 (40%) samples were IDV-antibody-positive in 2019 and 2020, respectively. Overall, 2/125 (2%), 11/157 (7%) and 269/517 (52%) of the samples were IDV-antibody-positive in the northern, middle and southern regions of Sweden. The highest proportion of positive samples was repeatedly detected in the south, in the county of Halland, which is one of the counties with the highest cattle density in the country. In order to understand the epidemiology of IDV, further research in different cattle populations and in humans is required.


Assuntos
Doenças dos Bovinos , Influenza Humana , Thogotovirus , Animais , Bovinos , Humanos , Leite , Suécia/epidemiologia , Influenza Humana/epidemiologia , Fazendas , Anticorpos , Doenças dos Bovinos/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária
11.
Sci Rep ; 13(1): 3806, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882459

RESUMO

Influenza D virus (IDV) is a causative agent of the bovine respiratory disease complex (BRDC), which is the most common and costly disease affecting the cattle industry. For developing a candidate vaccine virus against IDV, we sought to produce a temperature-sensitive strain, similar to the live attenuated, cold-adapted vaccine strain available against the influenza A virus (IAV). To this end, we produced a recombinant IDV (designated rD/OK-AL) strain by introducing mutations responsible for the adaptation of the IAV vaccine strain to cold conditions and conferring sensitivity to high temperatures into PB2 and PB1 proteins using reverse genetics. The rD/OK-AL strain grew efficiently at 33 °C but did not grow at 37 °C in the cell culture, indicating its high-temperature sensitivity. In mice, rD/OK-AL was attenuated following intranasal inoculation. It mediated the production of high levels of antibodies against IDV in the serum. When the rD/OK-AL-inoculated mice were challenged with the wild-type virus, the virus was not detected in respiratory organs after the challenge, indicating complete protection against IDV. These results imply that the rD/OK-AL might be a potential candidate for the development of live attenuated vaccines for IDV that can be used to control BRDC.


Assuntos
Complexo Respiratório Bovino , Thogotovirus , Animais , Bovinos , Camundongos , Anticorpos , Temperatura Baixa , Temperatura , Thogotovirus/genética , Vacinas Atenuadas
12.
J Virol ; 97(2): e0193822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749070

RESUMO

Mammalian myxovirus resistance (Mx) proteins are interferon-induced, large dynamin-like GTPases with a broad antiviral spectrum. Here, we analyzed the antiviral activity of selected mammalian Mx1 proteins against Thogoto virus (THOV). Of those, equine Mx1 (eqMx1) showed antiviral activity comparable to that of the human MX1 gene product, designated huMxA, whereas most Mx1 proteins were antivirally inactive. We previously demonstrated that the flexible loop L4 protruding from the stalk domain of huMxA, and especially the phenylalanine at position 561 (F561), determines its antiviral specificity against THOV (P. S. Mitchell, C. Patzina, M. Emerman, O. Haller, et al., Cell Host Microbe 12:598-604, 2012, https://doi.org/10.1016/j.chom.2012.09.005). However, despite the similar antiviral activity against THOV, the loop L4 sequence of eqMx1 substantially differs from the one of huMxA. Mutational analysis of eqMx1 L4 identified a tryptophan (W562) and the adjacent glycine (G563) as critical antiviral determinants against THOV, whereas the neighboring residues could be exchanged for nonpolar alanines without affecting the antiviral activity. Further mutational analyses revealed that a single bulky residue at position 562 and the adjacent tiny residue G563 were sufficient for antiviral activity. Moreover, this minimal set of L4 amino acids transferred anti-THOV activity to the otherwise inactive bovine Mx1 (boMx1) protein. Taken together, our data suggest a fairly simple architecture of the antiviral loop L4 that could serve as a mutational hot spot in an evolutionary arms race between Mx-escaping viral variants and their hosts. IMPORTANCE Most mammals encode two paralogs of the interferon-induced Mx proteins: Mx1, with antiviral activity largely against RNA viruses, like orthomyxoviruses and bunyaviruses; and Mx2, which is antivirally active against HIV-1 and herpesviruses. The human Mx1 protein, also called huMxA, is the best-characterized example of mammalian Mx1 proteins and was recently shown to prevent zoonotic virus transmissions. To evaluate the antiviral activity of other mammalian Mx1 proteins, we used Thogoto virus, a tick-transmitted orthomyxovirus, which is efficiently blocked by huMxA. Interestingly, we detected antiviral activity only with equine Mx1 (eqMx1) but not with other nonprimate Mx1 proteins. Detailed functional analysis of eqMx1 identified amino acid residues in the unstructured loop L4 of the stalk domain critical for antiviral activity. The structural insights of the present study explain the unique position of eqMx1 antiviral activity within the collection of nonhuman mammalian Mx1 proteins.


Assuntos
Cavalos , Proteínas de Resistência a Myxovirus , Thogotovirus , Animais , Bovinos , Humanos , Interferons/metabolismo , Estrutura Molecular , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Thogotovirus/genética
13.
J Virol ; 97(2): e0142322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692289

RESUMO

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Assuntos
Doenças dos Bovinos , Interações entre Hospedeiro e Microrganismos , Infecções por Mycoplasma , Infecções por Orthomyxoviridae , Transdução de Sinais , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/veterinária , Receptor 2 Toll-Like , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/virologia
15.
Zoonoses Public Health ; 70(2): 166-170, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36370131

RESUMO

Although cattle are a reservoir for influenza D virus (IDV), little is known about human exposure to IDV. We assessed IDV exposure and associated health effects among United States dairy workers, a population at heightened risk of cattle zoonoses. In prospective, cross-shift sampling of 31 workers employed at five large-herd dairy operations in two states, we found evidence of IDV in the nasal washes of 67% of participants at least once during the 5-day study period. IDV exposure was not associated with respiratory symptoms in these workers. These findings suggest that IDV is present in dairy cattle environments and can result in worker exposure.


Assuntos
Doenças dos Bovinos , Infecções por Orthomyxoviridae , Thogotovirus , Animais , Humanos , Bovinos , Estados Unidos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Estudos Prospectivos , Doenças dos Bovinos/epidemiologia , Zoonoses
17.
Viruses ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38257762

RESUMO

In recent years, numerous viruses have been identified from ticks, and some have been linked to clinical cases of emerging tick-borne diseases. Chinese northeast frontier is tick infested. However, there is a notable lack of systematic monitoring efforts to assess the viral composition in the area, leaving the ecological landscape of viruses carried by ticks not clear enough. Between April and June 2017, 7101 ticks were collected to perform virus surveillance on the China-North Korea border, specifically in Tonghua, Baishan, and Yanbian. A total of 2127 Ixodes persulcatus were identified. Further investigation revealed the diversity of tick-borne viruses by transcriptome sequencing of Ixodes persulcatus. All ticks tested negative for tick-borne encephalitis virus. Transcriptome sequencing expanded 121 genomic sequence data of 12 different virus species from Ixodes persulcatus. Notably, a new segmented flavivirus, named Baishan Forest Tick Virus, were identified, closely related to Alongshan virus and Harz mountain virus. Therefore, this new virus may pose a potential threat to humans. Furthermore, the study revealed the existence of seven emerging tick-borne viruses dating back to 2017. These previously identified viruses included Mudanjiang phlebovirus, Onega tick phlebovirus, Sara tick phlebovirus, Yichun mivirus, and three unnamed viruses (one belonging to the Peribunyaviridae family and the other two belonging to the Phenuiviridae family). The existence of these emerging tick-borne viruses in tick samples collected in 2017 suggests that their history may extend further than previously recognized. This study provides invaluable insights into the virome of Ixodes persulcatus in the China-North Korea border region, enhancing our ongoing efforts to manage the risks associated with tick-borne viruses.


Assuntos
Ixodes , Thogotovirus , Humanos , Animais , República Democrática Popular da Coreia , Viroma/genética , China/epidemiologia , RNA
18.
Viruses ; 14(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36560721

RESUMO

Bovine respiratory disease (BRD) is one of the most prevalent, deadly, and costly diseases in young cattle. BRD has been recognized as a multifactorial disease caused mainly by viruses (bovine herpesvirus, BVDV, parainfluenza-3 virus, respiratory syncytial virus, and bovine coronavirus) and bacteria (Mycoplasma bovis, Pasteurella multocida, Mannheimia haemolytica and Histophilus somni). However, other microorganisms have been recognized to cause BRD. Influenza D virus (IDV) is a novel RNA pathogen belonging to the family Orthomyxoviridae, first discovered in 2011. It is distributed worldwide in cattle, the main reservoir. IDV has been demonstrated to play a role in BRD, with proven ability to cause respiratory disease, a high transmission rate, and potentiate the effects of other pathogens. The transmission mechanisms of this virus are by direct contact and by aerosol route over short distances. IDV causes lesions in the upper respiratory tract of calves and can also replicate in the lower respiratory tract and cause pneumonia. There is currently no commercial vaccine or specific treatment for IDV. It should be noted that IDV has zoonotic potential and could be a major public health concern if there is a drastic change in its pathogenicity to humans. This review summarizes current knowledge regarding IDV structure, pathogenesis, clinical significance, and epidemiology.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Doenças Respiratórias , Thogotovirus , Vírus , Animais , Bovinos , Humanos , Bactérias , Doenças Respiratórias/epidemiologia
19.
Methods Mol Biol ; 2556: 187-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175636

RESUMO

Influenza D virus (IDV) is a new member of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Similar to influenza C virus (ICV), IDV also has seven segments in its genome and has only one major surface glycoprotein, called the hemagglutinin-esterase-fusion (HEF) protein, for receptor-binding, receptor-destroying, and membrane fusion. HEF utilizes 9-O-acetylated sialic acids as its receptor and has both receptor binding and esterase activities, thus is a critical determinant of host tropism. Here, we summarize the methods to evaluate the glycan-binding and esterase activities of HEF in vitro. The glycan-bind property is monitored through glycan microarray, MDCK cell-binding assay, Hemagglutination assay, solid-phase lectin binding assay, and immunofluorescence of tissue sections, and its esterase property is analyzed via esterase enzymatic activity assay.


Assuntos
Thogotovirus , Animais , Bovinos , Glicoproteínas , Hemaglutininas , Lectinas , Glicoproteínas de Membrana , Ácidos Siálicos
20.
Front Immunol ; 13: 970325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059535

RESUMO

Viral cross-species transmission is recognized to be a major threat to both human and animal health, however detailed information on determinants underlying virus host tropism and susceptibility is missing. Influenza C and D viruses (ICV, IDV) are two respiratory viruses that share up to 50% genetic similarity, and both employ 9-O-acetylated sialic acids to enter a host cell. While ICV infections are mainly restricted to humans, IDV possesses a much broader host tropism and has shown to have a zoonotic potential. This suggests that additional virus-host interactions play an important role in the distinct host spectrum of ICV and IDV. In this study, we aimed to characterize the innate immune response of the respiratory epithelium of biologically relevant host species during influenza virus infection to identify possible determinants involved in viral cross-species transmission. To this end, we performed a detailed characterization of ICV and IDV infection in primary airway epithelial cell (AEC) cultures from human, porcine, and bovine origin. We monitored virus replication kinetics, cellular and host tropism, as well as the host transcriptional response over time at distinct ambient temperatures. We observed that both ICV and IDV predominantly infect ciliated cells, independently from host and temperature. Interestingly, temperature had a profound influence on ICV replication in both porcine and bovine AEC cultures, while IDV replicated efficiently irrespective of temperature and host. Detailed time-resolved transcriptome analysis revealed both species-specific and species uniform host responses and highlighted 34 innate immune-related genes with clear virus-specific and temperature-dependent profiles. These data provide the first comprehensive insights into important common and species-specific virus-host dynamics underlying the distinct host tropism of ICV and IDV, as well as possible determinants involved in viral cross-species transmission.


Assuntos
Doenças Transmissíveis , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animais , Bovinos , Humanos , Imunidade Inata , Mucosa Respiratória , Suínos , Thogotovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...